208 research outputs found

    Delineation of high resolution climate regions over the Korean Peninsula using machine learning approaches

    Get PDF
    In this research, climate classification maps over the Korean Peninsula at 1 km resolution were generated using the satellite-based climatic variables of monthly temperature and precipitation based on machine learning approaches. Random forest (RF), artificial neural networks (ANN), k-nearest neighbor (KNN), logistic regression (LR), and support vector machines (SVM) were used to develop models. Training and validation of these models were conducted using in-situ observations from the Korea Meteorological Administration (KMA) from 2001 to 2016. The rule of the traditional Koppen-Geiger (K-G) climate classification was used to classify climate regions. The input variables were land surface temperature (LST) of the Moderate Resolution Imaging Spectroradiometer (MODIS), monthly precipitation data from the Tropical Rainfall Measuring Mission (TRMM) 3B43 product, and the Digital Elevation Map (DEM) from the Shuttle Radar Topography Mission (SRTM). The overall accuracy (OA) based on validation data from 2001 to 2016 for all models was high over 95%. DEM and minimum winter temperature were two distinct variables over the study area with particularly high relative importance. ANN produced more realistic spatial distribution of the classified climates despite having a slightly lower OA than the others. The accuracy of the models using high altitudinal in-situ data of the Mountain Meteorology Observation System (MMOS) was also assessed. Although the data length of the MMOS data was relatively short (2013 to 2017), it proved that the snowy, dry and cold winter and cool summer class (Dwc) is widely located in the eastern coastal region of South Korea. Temporal shifting of climate was examined through a comparison of climate maps produced by period: from 1950 to 2000, from 1983 to 2000, and from 2001 to 2013. A shrinking trend of snow classes (D) over the Korean Peninsula was clearly observed from the ANN-based climate classification results. Shifting trends of climate with the decrease/increase of snow (D)/temperate (C) classes were clearly shown in the maps produced using the proposed approaches, consistent with the results from the reanalysis data of the Climatic Research Unit (CRU) and Global Precipitation Climatology Centre (GPCC)

    Drought forecasts using satellite data based on deep learning over East Asia

    Get PDF
    Department of Urban and Environmental Engineering (Environmental Science and Engineering)This thesis/dissertation seeks to 1) forecast drought conditions effectively considering temporal patterns of drought indices and upcoming weather conditions through the deep learning approach, and 2) forecast drought by identifying the teleconnection effect based on the sea surface temperature through the deep learning approach. In this thesis/dissertation, there are four chapters. Chapter 1 summarizes the background of the research and overviews of the thesis research. In Chapter 2, drought-forecasting models on a short-term scale (8 days) were developed considering the temporal patterns of satellite-based drought indices and numerical model outputs through the synergistic use of convolutional long short term memory (ConvLSTM) and random forest (RF) approaches over a part of East Asia. Through the combination of temporal patterns and the upcoming weather conditions (numerical model outputs), the overall performances of drought-forecasting models (ConvLSTM and RF combined) produced competitive results. Furthermore, our short-term drought-forecasting model can be effective regardless of drought intensification or alleviation. The proposed drought-forecasting model can be operationally used, providing useful information on upcoming drought conditions with high resolution (0.05??). In Chapter 3, the Drought forecasting model on a mid-and long-term scale (one-three lead time) over East Asia was developed using temporal patterns of drought indices and teleconnection phenomena of SST through the CNN. Reanalysis based drought index, SPI, were selected with a mid- and long-timescale (one to three months), and satellite-based variable, precipitation and SST across the Pacific Ocean. As the lead time increased, the accuracy tended to fall, but it showed good results compared to CFS. When compared to a drought case, the SST of 8 months ago influenced on the results. Chapter 4 provides a brief summary of these studiesclos

    Double-loop reflective practice as an approach to understanding knowledge and experience.

    Get PDF
    The main aim of this paper is to consider the way in which reflective practice can assist practitioners in better understanding their individual knowledge and experience. Transitioning from a design novice to a design expert is described as a vague process, in which reflective practice can offer a level of understanding that provides an important insight into professional development within design. Through a comparison of two methods of reflection and analysis of reflective practice data, it is argued that repertory grid interviews have the potential to be a catalyst for double loop learning within individuals; providing people with a platform to reflect on their beliefs and values in addition to their approach towards problem solving. This argument is based on the ability of repertory grids to uncover some of the implicit knowledge developed by designers, which is a distinct advantage to alternative methods of reflection and which is necessary to improve professional practice understanding and learning

    Enhancing Spatiotemporal Traffic Prediction through Urban Human Activity Analysis

    Full text link
    Traffic prediction is one of the key elements to ensure the safety and convenience of citizens. Existing traffic prediction models primarily focus on deep learning architectures to capture spatial and temporal correlation. They often overlook the underlying nature of traffic. Specifically, the sensor networks in most traffic datasets do not accurately represent the actual road network exploited by vehicles, failing to provide insights into the traffic patterns in urban activities. To overcome these limitations, we propose an improved traffic prediction method based on graph convolution deep learning algorithms. We leverage human activity frequency data from National Household Travel Survey to enhance the inference capability of a causal relationship between activity and traffic patterns. Despite making minimal modifications to the conventional graph convolutional recurrent networks and graph convolutional transformer architectures, our approach achieves state-of-the-art performance without introducing excessive computational overhead.Comment: CIKM 202

    Towards Good Practices for Missing Modality Robust Action Recognition

    Full text link
    Standard multi-modal models assume the use of the same modalities in training and inference stages. However, in practice, the environment in which multi-modal models operate may not satisfy such assumption. As such, their performances degrade drastically if any modality is missing in the inference stage. We ask: how can we train a model that is robust to missing modalities? This paper seeks a set of good practices for multi-modal action recognition, with a particular interest in circumstances where some modalities are not available at an inference time. First, we study how to effectively regularize the model during training (e.g., data augmentation). Second, we investigate on fusion methods for robustness to missing modalities: we find that transformer-based fusion shows better robustness for missing modality than summation or concatenation. Third, we propose a simple modular network, ActionMAE, which learns missing modality predictive coding by randomly dropping modality features and tries to reconstruct them with the remaining modality features. Coupling these good practices, we build a model that is not only effective in multi-modal action recognition but also robust to modality missing. Our model achieves the state-of-the-arts on multiple benchmarks and maintains competitive performances even in missing modality scenarios. Codes are available at https://github.com/sangminwoo/ActionMAE.Comment: AAAI 202

    Downscaling GLDAS Soil Moisture Data in East Asia through Fusion of Multi-Sensors by Optimizing Modified Regression Trees

    Get PDF
    Soilmoisture is a key part of Earth's climate systems, including agricultural and hydrological cycles. Soil moisture data from satellite and numerical models is typically provided at a global scale with coarse spatial resolution, which is not enough for local and regional applications. In this study, a soil moisture downscaling model was developed using satellite-derived variables targeting Global Land Data Assimilation System (GLDAS) soil moisture as a reference dataset in East Asia based on the optimization of a modified regression tree. A total of six variables, Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced SCATterometer (ASCAT) soil moisture products, Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), and MODerate resolution Imaging Spectroradiometer (MODIS) products, including Land Surface Temperature, Normalized Difference Vegetation Index, and land cover, were used as input variables. The optimization was conducted through a pruning approach for operational use, and finally 59 rules were extracted based on root mean square errors (RMSEs) and correlation coefficients (r). The developed downscaling model showed a good modeling performance (r = 0.79, RMSE = 0.056 m(3)center dot m(3), and slope = 0.74). The 1 km downscaled soil moisture showed similar time series patterns with both GLDAS and ground soil moisture and good correlation with ground soil moisture (average r = 0.47, average RMSD = 0.038 m(3)center dot m(3)) at 14 ground stations. The spatial distribution of 1 km downscaled soil moisture reflected seasonal and regional characteristics well, although the model did not result in good performance over a few areas such as Southern China due to very high cloud cover rates. The results of this study are expected to be helpful in operational use to monitor soil moisture throughout East Asia since the downscaling model produces daily high resolution (1 km) real time soil moisture with a low computational demand. This study yielded a promising result to operationally produce daily high resolution soil moisture data from multiple satellite sources, although there are yet several limitations. In future research, more variables including Global Precipitation Measurement (GPM) precipitation, Soil Moisture Active Passive (SMAP) soil moisture, and other vegetation indices will be integrated to improve the performance of the proposed soil moisture downscaling model.ope

    Sketch-based Video Object Localization

    Full text link
    We introduce Sketch-based Video Object Localization (SVOL), a new task aimed at localizing spatio-temporal object boxes in video queried by the input sketch. We first outline the challenges in the SVOL task and build the Sketch-Video Attention Network (SVANet) with the following design principles: (i) to consider temporal information of video and bridge the domain gap between sketch and video; (ii) to accurately identify and localize multiple objects simultaneously; (iii) to handle various styles of sketches; (iv) to be classification-free. In particular, SVANet is equipped with a Cross-modal Transformer that models the interaction between learnable object tokens, query sketch, and video through attention operations, and learns upon a per-frame set matching strategy that enables frame-wise prediction while utilizing global video context. We evaluate SVANet on a newly curated SVOL dataset. By design, SVANet successfully learns the mapping between the query sketches and video objects, achieving state-of-the-art results on the SVOL benchmark. We further confirm the effectiveness of SVANet via extensive ablation studies and visualizations. Lastly, we demonstrate its transfer capability on unseen datasets and novel categories, suggesting its high scalability in real-world application

    Icing detection over East Asia from geostationary satellite data using machine learning approaches

    Get PDF
    Even though deicing or airframe coating technologies continue to develop, aircraft icing is still one of the critical threats to aviation. While the detection of potential icing clouds has been conducted using geostationary satellite data in the US and Europe, there is not yet a robust model that detects potential icing areas in East Asia. In this study, we proposed machine-learning-based icing detection models using data from two geostationary satellites—the Communication, Ocean, and Meteorological Satellite (COMS) Meteorological Imager (MI) and the Himawari-8 Advanced Himawari Imager (AHI)—over Northeast Asia. Two machine learning techniques—random forest (RF) and multinomial log-linear (MLL) models—were evaluated with quality-controlled pilot reports (PIREPs) as the reference data. The machine-learning-based models were compared to the existing models through five-fold cross-validation. The RF model for COMS MI produced the best performance, resulting in a mean probability of detection (POD) of 81.8%, a mean overall accuracy (OA) of 82.1%, and mean true skill statistics (TSS) of 64.0%. One of the existing models, flight icing threat (FIT), produced relatively poor performance, providing a mean POD of 36.4%, a mean OA of 61.0, and a mean TSS of 9.7%. The Himawari-8 based models also produced performance comparable to the COMS models. However, it should be noted that very limited PIREP reference data were available especially for the Himawari-8 models, which requires further evaluation in the future with more reference data. The spatio-temporal patterns of the icing areas detected using the developed models were also visually examined using time-series satellite data

    Short-Term Forecasting of Satellite-Based Drought Indices Using Their Temporal Patterns and Numerical Model Output

    Get PDF
    Drought forecasting is essential for effectively managing drought-related damage and providing relevant drought information to decision-makers so they can make appropriate decisions in response to drought. Although there have been great efforts in drought-forecasting research, drought forecasting on a short-term scale (up to two weeks) is still difficult. In this research, drought-forecasting models on a short-term scale (8 days) were developed considering the temporal patterns of satellite-based drought indices and numerical model outputs through the synergistic use of convolutional long short term memory (ConvLSTM) and random forest (RF) approaches over a part of East Asia. Two widely used drought indices-Scaled Drought Condition Index (SDCI) and Standardized Precipitation Index (SPI)-were used as target variables. Through the combination of temporal patterns and the upcoming weather conditions (numerical model outputs), the overall performances of drought-forecasting models (ConvLSTM and RF combined) produced competitive results in terms of r (0.90 and 0.93 for validation SDCI and SPI, respectively) and nRMSE (0.11 and 0.08 for validation of SDCI and SPI, respectively). Furthermore, our short-term drought-forecasting model can be effective regardless of drought intensification or alleviation. The proposed drought-forecasting model can be operationally used, providing useful information on upcoming drought conditions with high resolution (0.05 degrees)

    Associations of Anti-Aquaporin 5 Autoantibodies with Serologic and Histopathological Features of Sjogren's Syndrome

    Get PDF
    Biomarkers to stratify the complex and heterogeneous phenotypes of Sjogren's syndrome (SS) are needed. We aimed to validate the prevalence of anti-aquaporin 5 (AQP5) IgG in a non-Korean cohort and to optimize the method to screen the anti-AQP5 IgG. The study cohort included 111 primary SS and 43 non-SS Sjogren's International Collaborative Clinical Alliance (SICCA) controls that were obtained from the Sjogren's International Collaborative Clinical Alliance registry, in addition to 35 systemic lupus erythematosus (SLE) and 35 rheumatoid arthritis (RA) phenotypes. Anti-AQP5 IgG was screened by cell-based immunofluorescence cytochemistry (CB-IFC) assay in the absence or presence of epitope peptides, as well as by ELISA using the epitope peptides as coated antigens. Anti-AQP5 IgG specific to an E1 epitope was best at discriminating between SS and non-SS, and the two different methods (CB-IFC and ELISA) presented comparable performance in diagnostic accuracy (0.690 vs. 0.707). Notably, the SLE and RA groups had substantially lower levels of anti-AQP5 IgG than the SS group. In addition, the presence of anti-AQP5_E1 IgG was associated with serologic and histopathological features of SS. In conclusion, a similar prevalence of anti-AQP5 IgG was confirmed in a non-Korean cohort. Screening anti-AQP5 autoantibodies may help to form subgroups of SS for targeted therapy.Y
    corecore